NPR (New Packet Radio)
A TCP/IP router for 70cm

David Ranch
KI6ZHD
BayCon 2020
2/9/2020
Who is this KI6ZHD guy anyway?

- BayNet's current Yaesu System Fusion and Black Mountain network lackee
- Silicon Valley AMPR coordinator (44.4.0.0/16)
- Interested in everything Linux & data. Active in:
 - Direwolf / Linpac / Fldigi, QSSTV. etc
 - 1200bps AX.25 packet (145.050) & APRS
 - First licensed in 2009
NPR: What is it?

• "NPR" stands for “New Packet Radio” yet it has nothing in common with the 1200bps AX.25 modes that you might be familiar with

• Protocol and modem designed by Guillaume F4HDK
 - NPR website: https://hackaday.io/project/164092

• This is a 70cm TCP/IP router-like device that can support transfer rates from 60Kbps up to 500Kbps of IPv4 traffic

• Uses a TDD (time division duplex) design similar to DMR radios with a theoretical distance of 300KM (186 miles)

• Supports either simplex or hybrid full duplex configurations either for point to point or point to multi-point configurations
NPR: Why is it needed?

- 70cm RF propagation offers more connectivity options than what 2.4, 3.4, or 5.8Ghz can
- Complementary to high speed systems for long distance or difficult to reach destinations
- Not every situation needs multi-megabit speeds
- Whole new protocol to play with that is tailored to meet amateur radio requirements (Part 97: no encryption, IDing, etc)
- The client setup is simple and the master pushes future configuration changes to all clients
- Inexpensive: $79 US for a fully built NPR modem
- Possible Use-cases:
 - Provide IP connectivity when other solutions won't work
 - Admin network access when the Internet is down
What will BayNet users be able to do?

• For now, get Internet access via Baynet's 44.4.128.0/22 AMPR subnet while mobile, maybe a backup connection, etc

• Run AREDN/BBHN applications like MeshChat, MatterMost, XMPP/Jabber, IRC, VoIP,

• Future use cases such as DTV, VoIP, etc. Sky is the limit!

• Other possible options can always be considered
NPR: What's inside?

- The heart of the modem is a Silicon Labs SI-4463 (30 dbm / 1 watt) transceiver and a Nucleo STM32 L432K SBC
- Open source PCB and software
- Users can build their own modems or buy a pre-built unit
- Flexible input power options
- Beyond NPR: The Si-4463 transceiver supports other modes like 2FSK, 4FSK, GMSK, OOK so with your own firmware, this can be a reference board to play with entirely different ideas
NPR: 5 Different Modulations

- Different modulations to suit different rules
- Modulation types are selectable between 2GFSK or 4GFSK with FEC
- To meet current US FCC regulations, our highest speed transmission mode is 100Khz wide and 50Ksymbol/sec yielding ~60Kbps of IP payload (real world)

Meaning of 2 digits
- 1er digit: 2GFSK or 4GFSK
- 2ième digit: Symbol Rate

<table>
<thead>
<tr>
<th>Modulation name</th>
<th>x0</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol Rate</td>
<td>50</td>
<td>100</td>
<td>180</td>
<td>300</td>
<td>500 kS/s</td>
</tr>
<tr>
<td>Radio bandwidth</td>
<td>100</td>
<td>200</td>
<td>360</td>
<td>600</td>
<td>1000 kHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulation name</th>
<th>2GFSK</th>
<th>4GFSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1st digit of name : 1x)</td>
<td>(1st digit of name : 2x)</td>
<td></td>
</tr>
<tr>
<td>Raw data rate</td>
<td>11 (*)</td>
<td>20 (*)</td>
</tr>
<tr>
<td>Usable data rate</td>
<td>12 (*)</td>
<td>21 (*)</td>
</tr>
<tr>
<td>Modulation name</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>Raw data rate</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Usable data rate</td>
<td>71</td>
<td>120</td>
</tr>
</tbody>
</table>
NPR: It's RF behavior

• NPR is a managed timeslot protocol so no collisions are possible (think Token Ring)

• Three general modes for a single connected client to master setup:
 – Disconnected: master sends a “presence” poll packet every 15 seconds
 – Connected / slow: client sends out a poll packet every 4.5 seconds (560ms slot per client) to maintain connected state
 – Connected / active fast: bi-directional packets sent every 560ms (depends on modulation to transfer low data rates

• ICMP “ping” latency can range from 350 to 550ms
 – Connected / active fast #2 – longer bi-directional packets sent allocated with more timeslots depending on the pending traffic

• The TDM slot allocation is calculated by the master in real time depending on the data queue length
NPR: TDM timing

- NPR's timing is broken down into 17 “micro-slots” where the slots are distributed across all client modems depending on slow – These are then grouped into “4x” or “8x multi-frames”

- Fast TX/RX timing cycles from 80ms to 200ms (depending on modulation)
- Max “Timing Advance” is 2ms to support a RTT of 300KM
NPR and a companion DMR amplifier

- Paired together, the amplifier will get you to about 20 Watts TX
NPR: Compared to analog POTS modems

- This ~60Kbps TCP/IP rate is NOT like an old school dial-up modem running at ~56Kbps (just ASCII payload)
- 56Kbps analog modems only supported point to point connections vs NPR is a point to multi-point solution
- To connect to the Internet via an analog modem, users were actually using TCP/IP over PPP over analog modem which is a lot slower
 - Both analog 56Kbps connections (53Kbps actually) and NPR connections offer asymmetrical speeds
 - Analog modems offer v.42bis compression where as NPR doesn't compress IP payloads today
- Latency is variable depending on the NPR modem's mode. NPR end to end latency is variable 350ms to 650ms
NPR: Compared to D-Star-DD (128Kbps)

- Dstar-DD is a 128Kbps RAW protocol that operates on a Layer-2 (Ethernet frame) level and yields a ~90Kbps usable TCP/IP payload.
- Limited client hardware: Only the EOL'ed Icom ID-1 mobile or new Icom IC-9700 VHF/UHF base-station radio offer Dstar-DD 1.2Ghz.
- Operation on 1.2Ghz can have challenging RF propagation issues.
- The Dstar-DD radio acts as a Layer-2 bridge to the repeater side.
- Addressing is controlled via your Callsign's Dstar registration.
- Dstar-DD configuration builds on top of the standard D-star configuration parameters but effectively this all requires IP subnet coordination usually via a static DHCP server.
NPR: It's “router like”

• What do I mean by being a "router-like" (compared to say a Wifi AP) access point

• Every IP address in the DHCP scope is proxy-arp'ed by the Master NPR node regardless if there are active clients or not

• The master and clients are on the same subnet; it doesn't route, NAT, or otherwise manipulate packets

• IPv4 Unicast traffic only / no broadcast or multicast support today

• Max MTU is 1500 bytes but 750 bytes is optimal to align to the TDM micro-slot design
ready> display config
CONFIG:
callsign: 'KI6ZHD-M1'
is_master: yes
frequency: 437.000MHz
freq_shift: 0.000MHz
RF_power: 25
modulation: 20
radio_netw_ID: xx
radio_on_at_start: yes
telnet active: yes
telnet routed: yes
 modem_IP: 192.168.0.253
 netmask: 255.255.255.0
 master_FDD: no
 IP_begin: 192.168.0.65
 master_IP_size: 32 (Last IP: 192.168.0.96)
def_route_active: yes
def_route_val: 192.168.0.254
DNS_active: yes
 DNS_value: 192.168.0.1
ready>

ready> status
 1 status: connected TA:0.0km Temp:29degC
 RX_Eth_IPv4 330509 ;TX_radio_IPv4 210598 ; RX_radio_IPv4 72074
 DOWNLINK - bandwidth:0.5 RSSI:-67.4 ERR:0.00%
 UPLINK - bandwidth:1.4 RSSI:-68.0 ERR:0.00%
CTRL+c to exit...

ready> who
 3 Master: ID:127 Callsign:KI6ZHD-M1
 ME: Callsign:KI6ZHD-2 ID:0 modem IP:192.168.0.253
 Clients:
 ID:0 Callsign:KI6ZHD-2 IP start:192.168.0.65 IP end:192.168.0.65
ready>
NPR: iperf performance for one client

• Some buffering is present so numbers can fluctuate

• Master to Client #1 (TCP)
 0.0–94.0 sec 640 KBytes 55.8 Kbits/sec

• Client #1 to Master (TCP)
 0.0–84.0 sec 512 KBytes 49.9 Kbits/sec
NPR: It's current state today..

- Not intended to be a LAN to LAN connectivity solution
- Maximum of 7 remote endpoints
- If a client is connected to the master, the link will never be torn down even if the client is idle. This currently locks out other clients OUT of the network
- The full duplex design is only master-centric today. Clients support is half duplex
- SI-4463 receiver is known to be limited, has a wide-open RX passband. It needs a preamp, and ideally a tuned duplexer
- The RF4463 board's USB port is susceptible to RFI
- FEC is overly simple: users must try to keep the Bit Error Rate (BERR < 2%)
- Recommended DMR amp selection is limited and built-in pre-amp requires amp to be active at all times (no RX only mode)
- Serial or TELNET CLI is simple and troubleshooting features are very limited today
- Static IP support is limited
- A 2m version is technically available but only for DIY builds and is a WIP
NPR: Evolution in the future

• Near Future enhancements
 – FDD improvements for simultaneous transmit and receive support at the master

• Later enhancements under consideration
 – Support up to 15 end clients
 – NPR protocol to move down the OSI stack to transmit Ethernet frames (not IPv4 frames). This will allow for IPv6 packets but also increase overhead. This is how Dstar-DD works today
 – Possible MSS clamping to align to optimal 750byte MTU which aligns to NPR's TDM timing
 – Maybe the US FCC will drop the current symbols/second restriction but this has been pending since 2013
How do interested BayNet users get started?

• Get KI6ZHD to get off his butt and deploy the master node up on the Baynet repeater site
• Reach out to KI6ZHD to get the NPR configuration details
• Users (you):
 – Build up or buy an NPR modem
 – Buy a qualified DMR amp
 – Buy or build a high gain directional 70cm antenna
 One good option is the M2 Antennas 440-6SS
 – Buy needed coax, connectors, power supplies, etc
 – Assemble your system
 – Follow the NPR Advanced guide to get things online
References

• Some pictures and diagrams in this presentation are from F4HDK or Funtronics's documentation

• https://hackaday.io/project/164092-npr-new-packet-radio

• IEEE article

• Youtube video from F4HDK
 – https://www.youtube.com/watch?v=eyCTPeAjbTo

• Funtronics NPR modems (pre-built and kits)
Thank you!

Any Questions?